Article of the Month -
June 2007
|
The ABC of x,y,z -
21 Principles for Consideration by Surveyors and Other Geospatial
Professionals
Peter BYRNE and Gail KELLY, Australia
This article in .pdf-format.
SUMMARY
The authors consider the nature of underlying truths that may apply to
surveyors and all spatial scientists, regardless of their field of endeavor
or employment circumstances. Drawing on and expanding previous work, a set
of practice principles is proposed in three themes: Application (of the
sciences), Behaviour (conduct) and Context (business or research
environment). The authors have taken the work forward to the
professions,particularly young professionals, with encouraging results.
Methods of sharing and propagating the work are discussed. In light of these
experiences, it would be appropriate to rename ‘Principles’ as ‘Questions’
as questions invariably lead participants from the abstract to the tangible
by way of story-telling. Story-telling, the most ancient form of
communicating, sharing knowledge and understanding, has its place in modern
professional development.
1. INTRODUCTION
In previous work (Byrne and Kelly 2005) the scope, identity and
composition of the Spatial Sciences was examined. The primary theme of that
paper was that the various branches of surveying and the spatial sciences
are bound by a common set of principles. A set of proposed principles was
published as ‘The ABC of x,y,z’.
The authors were encouraged by the reception given to their work,
particularly from young professionals. The experiences gained from workshops
and other presentations since the original work have provided useful
insights in to how the concept of principle-based-practice might be
encouraged in future.
The aim of this paper is to share the original work and recent
experiences in Australia with an international audience, recognising that
any take up-or adaptation will require modification to reflect national,
institutional or cultural differences from those from in which the work was
born.
2. THE ‘WHO’, ‘HOW’ and ‘WHY’
2.1 The ‘Who’
This work has been focused on practitioners of the ‘spatial sciences’ –
those who undertake the first nine functions of the eleven defined by FIG as
being those of a surveyor. (FIG 2004) The Spatial Sciences are performed,
managed and taught by large and small local, national and international
corporations, government agencies at all levels, individuals and
partnerships; and by teaching and research institutions. The work is done by
qualified scientists, administrators, teachers, researchers, technicians
and, in some circumstances, people with low-level skills and education.
The roots of modern surveying and spatial sciences lies in the great
explorations , navigations and mapping expeditions of the 18th and 19th
centuries. When we consider how the basic principles of the spatial sciences
may have been shared and passed on in previous times, it is not too
outrageous to suggest that it happened around the campfire, in the mess or
at the office, or in the course of the work which was more likely done less
frenetically and with less distraction than today.
2.2 The ‘How’
The changes in surveying and the spatial sciences are most easily
demonstrable through the changes in the technologies. The technology shifts
have brought with them the separate IT strand of the spatial sciences –
Geoinformatics and GIS. The result of these developments has been in higher
quality and faster delivery. Spatial information has never been more
affordable. More is being made, sold, and used.
Two shifts in the technology continuum are particularly pertinent to this
discussion. The first is in the tools becoming less transparent, less
tactile, as analogue has given way to digital. Modern professionals or
technicians rely on equipment that contain algorithms and sensors to which
they have no direct access. The second shift is in many of the tools being
available to others without the foundation in the sciences. GPS is an
example of an ‘everyman’s’ tool.
In the space of one professional lifetime, education of surveyors and
spatial scientists has become almost exclusively the responsibility of
universities and technical colleges. Curricula are defined in discrete
learning ‘units’ that can not be practicably connected with any
philosophical glue.
2.3 The ‘Why’
It is an interesting phenomenon in the spatial sciences that we rarely
define ourselves in terms of the ‘why’. Definitions are typically by
function. FIG (FIG 2004) defines the surveyor by function alone.
Hydrographic surveying, for example, is not commonly defined as: providing
the information and infrastructure upon which the safety of ships and
mariners depends. Cadastral surveying is not defined as: providing the
framework which underpins the human settlement process and upon which the
financial security of many citizens depends. When the ‘why’ is considered,
the consequences and costs of our mistakes and shortfalls become apparent.
2.4 Questions Arising From The ‘Whom’, ‘How’ and ‘Why’
- Given the importance of our work or, more importantly, the potential
cost of our failure, what are the fundamentals, the tenets, the
principles, that we need to observe to ensure success for ourselves and
satisfaction of the needs of others?
- How can principles be passed from the experienced to the less
experienced?
3. STANDARDS, SPECIFICATIONS, PROCESSES
To understand the concept of Principle, it is useful to look first at
other parameters that are familiar in applications of the Spatial Sciences.
Standards attempt to regulate behaviours and products, defining limits
within which behaviours or products will conform. Almost every product can
be compared to a standard.
Specifications and Standards are similar. Specifications may be
‘process-oriented’ or ‘outcome-oriented’, or a mix of both. Specifications
provide a statement of buyers’ expectations. Specifications may refer to
standards.
Processes define the steps to be taken. They should be designed by people
who understand the technologies and the end requirements. Processes are
changed as improvements are realised or technologies change. Good processes
are based on underlying principles.
4. PRINCIPLES
Technological change persists. The transmission of knowledge has moved
from workplace to classroom. Government-financed training has lessened.
Employees are less likely to enjoy long term working and learning
relationships within corporations. Technologies tend to opacity and frequent
change. Competition is unlikely to lessen. These trends put pressure on
organisations and individuals as they strive to succeed. They provide more
reason than ever to revisit and to consider fundamental Principles.
Principles, tenets or fundamentals? The words are interchangeable. We
chose ‘Principle’ because of its familiarity, disregarding its many other
meanings and applications. For the purpose of our work we take ‘Principle’
to mean:
- a rule or standard of action or behaviour
- a basic truth, law or assumption; or
- a doctrine or tenet.
4.1 Another View of Principles
As these thoughts emerge, Principles start to be seen as laws we should
always consider. Another way of understanding Principles is to imagine being
involved in litigation, in the witness box, answering questions from a well
prepared barrister:
“We have already established that you are an experienced and respected
surveyor. We have also established that my client’s reliance on the
information you provided has cost him considerably. You have demonstrated
that you have followed established processes in your work. So, tell me, what
fundamental, what tenet, what principle of your profession and your science
did you overlook to bring you to this unhappy place today?”
4.2 The ABC Themes
Principles may be grouped to address the issues of the ‘how’, ‘who’ and
‘why’ in three themes:
Application - the ‘how’ of the science and technology
Behaviour / Conduct – the ‘who’, relationships with stakeholders
- client, community, employer, colleagues
Context – the ‘why’, the business ‘how’, communication with
client and user.
A set of proposed principles based in these themes is summarised below
and then expanded in the following sections.
Application |
Behaviour
(Spatial Sciences Institute 2003) |
Context |
1 |
First,
consider the whole |
1 |
1st
responsibility is to the community |
1 |
Confirm
the client and interested others |
2 |
Know the
tools |
2 |
Act well
and with honesty |
2 |
Define
the objective |
3 |
Consider
contributing errors |
3 |
Stay
within competence |
3 |
Be aware
of external constraints and expectations |
4 |
Record
defining parameters |
4 |
Develop
and maintain knowledge and skills |
4 |
Assess
and share the risks |
5 |
Beware
the bounds of convention |
5 |
Act in
the interests of client or employer |
5 |
Define
the critical terms |
6 |
Build
proof into the process |
6 |
Inform
clients and employers |
6 |
Test
processes against project scope |
7 |
Engage
the user |
7 |
Reveal
conflict of interest |
7 |
Attribute
contributions by others |
6. PRINCIPLES of APPLICATION
The Principles of Application accommodate the laws, theories and rules of
the underlying sciences. While the sciences remain unchanged so, too, will
the principles, regardless of changes in technology. Principles are
proposed:
5.1 First, Consider The Whole
This principle may be stated in other ways: Work From the Whole to the
Part, Start With the End in Mind. Considerations of scale, congruence and
design demand observance this principle.
‘Working from the whole to the part” is a well recognised surveying
principle – working within the control system, extrapolating from the
longest baseline. Interpolation contains errors, extrapolation grows them.
The principle seems self-evident. Yet, it is not always easy to apply.
Modern measuring technologies are such that the ‘whole’ – the control system
- may be found deficient. The assembled parts may be more accurate than the
‘whole’. This may require the surveyor to consider changing the ‘whole’ to
fit the ‘parts’, raising questions of other data which are related to the
‘whole’, and other users who rely on the data. Resolving issues arising from
non-congruence of the parts and the whole demands wise professional
judgment.
Considering the part-within-the-whole is essential for the maker of any
set of spatially related information. Design wisely precedes creation.
Without a clear vision of the ‘end’, the exercise will be compromised.
Remote sensing specialists and GIS developers consider “part’ and ‘whole’
when assessing the scope and scalability requirements of the project or
phase. Scalability impacts infrastructure requirements such as computational
intensity, data storage capacity, data administration and network
requirements. Professional judgment based on experience will indicate an
optimal solution given the client’s vision, budget and risk aversion. The
practitioner reflects on the part (current project specific requirements)
and the whole (parallel complementary or future projects).
5.2 Know The Tools
This principle is more important than ever before. Within half of a
lifetime, the tools of our professions have become opaque, automatic,
capable of high rates of production. Modern tools are subject to improvement
and change on a regular basis. New versions appear. Surprises lurk. Maker’s
claims require validation. The tools must be capable of delivering the
results required.
The imperative to ‘know’ the tool on which one relies can be understood
when imagining the earlier barrister’s question. It would be wise for the
professional to not rely only on a manufacturer’s claim without ascertaining
that the tool performs as expected, and is calibrated.
As the tools become more opaque, their workings not so well known, the
necessity for empirical methods of testing and calibrating increase.
5.3 Consider and Analyse Contributing Errors
In most applications there will be an expected accuracy of object in
space. Errors come from a number of sources. Errors need to be assessed and
analysed as part of the design process.
Photogrammetrists assess and propagate the contributing errors of ground
control, aerial GPS control, aerial triangulation, camera and capture to
design their processes to achieve objective accuracy. Remote sensing
scientists consider raw or pre-processed data from various sensors with
varying resolutions in analysing land change phenomena. GIS implementers, in
integrating data of variable thematic and spatial standards, consider the
resultant reliability to be expected by the user of the merged information.
Experienced professionals may do this instinctively. There are traps .
The processes and technologies that contribute errors are ever in change.
Some new technologies improve accuracy or precision, others worsen them. It
is sensible to consider each error separately.
In a competitive, litigious and time - sensitive world, surveyors and
spatial scientists will heed this principle to ensure that their process
designs are not so robust as to well exceed the target, be price -
uncompetitive or delivered late; or, more importantly, that they do not fail
to achieve the required accuracy.
5.4 Record the Defining Parameters
Today’s spatial data becomes tomorrow’s evidence of change. Spatial
Reference Systems are amended, corrected and changed. In Australia we are
fortunate to have a spatial reference system of the high quality. Yet,
lurking in it are residual mistakes and deficiencies. Many other countries
are not so fortunate, having reference systems in transition, or even decay.
Some countries have crustal movement that defies the notion of a stable
reference system. Attributing a spatial data set with only the name of map
grid and geodetic datum is inadequate if this principle is to be honoured.
Reference to specific monuments and their ordinate values can overcome this
deficiency. Hydrographic surveyors’ descriptions and recordings of Chart
Datum parameters provide a good example for honouring this principle.
Environmental projects of state and national significance are
establishing baseline data sets for current and future analyses. Due to the
magnitude of these projects, future users working at the local scale need to
confirm the integrity of the data for their scale of project, as the
surveyor checks the origin of his coordinates. The range of defining
parameters - spatial, spectral, temporal - is a reflection of the diversity
of the work of surveyors and spatial scientists.
Adherence to this principle is supported by the increasing use of
metadata with sets of spatial information. More of our work consists of
adding to or building on existing data, making this principle more pertinent
as this trend continues.
5.5 Beware The Bounds of Convention
This principle may otherwise be stated: “avoid foisting the
unconventional on the client or the user”; or “beware of letting your
innovation become another’s confusion”. It reminds the practitioner to
remain aware of convention.
This principle covers almost all parts of the spatial scientist’s
professional life. It can be applied to records, physical monuments,
drawings, maps, reports. It may be better understood by considering some of
the conventions we take for granted. This principle gives a reminder that
surveyors have clients from many industries and communities, each with its
own language, jargon and conventions. A mine surveyor would be ill advised
to change the thirty year – established vertical reference datum of a mine
to the national datum without good reason and careful consultation.
This principle is probably most important in the field of
geo-visualisation or cartography and the employment of symbolisation.
Consider a fanciful revision of the symbols for the channel markers on a
hydrographic chart! Having said this, strengthened or improved conventions
would not evolve without critical review and continual improvement.
5.6 Build Proof Into The Process
Users expect reliability and accuracy. Understanding this, surveyors make
provisions to ensure expected levels of reliability and accuracy are
achieved.
Proof of achievement comes from the external check. Redundant
measurements built in to the process provide confidence in the process and a
measure of proof. Repetition does not constitute proof. The external check
stands alone because it can reveal failure to detect some hitherto
overlooked blunder or systematic fault.
The remote sensing scientist producing land clearing maps for court
should incorporate both spatial and attribute redundancy. Surveyors
routinely ‘close’ between control and compare new measurements with adjacent
or previous surveys, so providing the external check.
Many organisations now use third party independent checks of mapping. There
is no proof without the external check. Consider again the probing,
well-briefed, barrister!
5.7 Engage The User
This principle is based on the notion that all of the foregoing is
relevant only if the outcome is understood by the user.
Modern methods of creating data move toward virtual reality. High
resolution terrestrial and aerial sensors give the potential for virtual 3D
worlds. Yet the existing paradigm for geo-visualisation is grounded in the
assumption that abstraction is needed for achieving insight (ICACI 2003).
There is tension between the data (the truth) and the designer of the
information. This is recognised in The Principles of Cartographic Design
(Cartographic Society 2002) some of which are drawn on here:-
How is the user engaged? If not by a virtual world, engagement will be
enhanced by:
- Hierarchy With Harmony - important things should look important and
the most important should look most important
- Simplicity From Sacrifice, Clutter to Clarity – as in music, the
spaces are as important as the notes. Clarity, and so engagement, can be
achieved by leaving out that which may be left out without compromising
the themes to be transmitted, by the use of symbol and generalisation
without altering the effective truth.
Fra Mauro, a Renaissance cartographer to the Court of Venice, imagined in
‘The Mapmaker’s Dream’ (Cowan 1997) reflects on the purpose of his craft as
a Cartographer: the craftsman’s task is to extract a form from what has been
given to him, and to make of it something that appeals to the heart as to
the mind.
Engagement of the user goes beyond spatial information to the language of
the user. Scientific jargon, unexplained acronyms and legal terms may
baffle. Metadata (5.4) are unlikely to provide engagement with a user other
than another professional. Two codes are needed – our technical language for
our colleagues and peers, and the common language of the user.
Of all the Application Principles, this one relies most on professional
judgment and experience, even intuition, and a sound foundation of
knowledge.
6. PRINCIPLES of BEHAVIOUR
Professional societies have Codes of Ethics. Most share a common base of
the values of competence, truth and social justice. The following section is
drawn from the Code of Ethics of the Australian Spatial Sciences Institute
(Spatial Sciences Institute 2003). The separate sections reflect tenets of
the code. Ethical dilemmas occur when one tenet of the Code can not be
honoured without apparent breach of another. In a professional life, ethical
dilemmas will inevitably surface.
6.1 First Responsibility Is To The Community
The welfare and rights of the community come before professional,
personal or sectional interests. The community includes employees,
colleagues, all other people. The tenet reminds us that the professional
needs to be aware of the wider consequences of actions and advice. Sometimes
the objectives of a client and community interests may be different,
creating a dilemma.
6.2 Act Well and With Honesty
This tenet hardly needs explanation. A professional is not expected to
receive payment from more than one source for the same service, unless
revealed. Under this tenet, a professional would be expected to not damage
the reputation of others, or seek to supplant another already engaged by a
client.
6.3 Stay Within Competence
This tenet would seem self-evident. However there are occasions when the
assignment requires the professional to try new methods or develop new
processes. Principle 7.4 requires informing clients of risk. In a
technology-based profession, it is easy to imagine this Principle leading to
a dilemma.
6.4 Develop and Maintain Knowledge and Skills
Any professional is expected to stay up-to-date and adequately skilled;
and to encourage staff to do the same. Most professional societies have
measurable CPD programs intended to keep members informed and competent.
6.5 Act In The Interests of Client or Employer
The professional is expected to take an active interest in the interests
of the client or employer. It is only when these interests clash with other
principles that dilemmas arise. This tenet reminds us that every
professional, regardless of employment circumstances, has a client.
Identification of the client is considered in 7.1. Confidentiality of
employer or client information is expected.
6.6 Inform Clients and Employers
The professional not only looks out for the interest of the client or
employer, but also informs the client about risks, potential difficulties,
matters that may impact on interests - issues of environment, regulation,
law or relationship.
6.7 Reveal Conflict of Interest
The professional is careful to reveal any conflict of interest – real or
apprehended. Any external relationship which may be seen to compromise the
impartiality or objectivity of a professional is best disclosed at the
start, or as soon as it becomes evident. A common saying is: ”if conflict of
interest is questioned, it probably exists”.
7. PRINCIPLES of CONTEXT
The Principles of Context guide surveyors in their communications and
immediate relationships in carrying out their work. The Principles of
Context and Conduct will be found to overlap. They may be expected to change
as society and relationships between its sectors change. Principles are
proposed:-
7.1 Confirm The Client and Interested Others
There is always a client, regardless of one’s employment status. If we
consider that the Client is the one to be satisfied by our actions or our
product, it will become apparent that identification of the client is not
always as simple as may at first appear. The client is not necessarily the
one who pays. There may be a multiple client, or common clients. They may
have different objectives. There may be other interested parties. Cadastral
surveyors are familiar with the need to take into account the rights and
needs of adjacent title holders.
So the question “who is the client?’ followed by “are there other
interested parties?” will allow this principle to be honoured.
7.2 Define The Objective
As with the preceding principle, this one is seemingly simple, yet
deceptively difficult to practice. The Objective may be better termed the
‘Business Objective’. It is the answer to the “why” question. Asking the
“why” question is, by itself, a skill that does not arrive without practice.
Determining the objective is an essential skill of a practitioner. If the
objective is defined and satisfied, other complaints, criticisms and
perceived shortfalls will fall away.
It is one thing to define an objective and another to know it has been
achieved. Agreeing at the start how the outcome will be judged is wise. If
the objective is subjected to a reality check, ambiguity of conformance at
the completion of the project will be greatly diminished. It is sensible to
document the Objective, the scope, deliverables and timing and have the
client sign off before proceeding.
The ability to define the objective with the client is arguably the skill
that will best foster sound business relationships.
7.3 Be Aware of External Constraints and Expectations
This principle may fall in to the category of “it goes without saying”.
We include it nonetheless.
There are branches of the Spatial Sciences community that already work
within the constraints of external authorities. Cadastral surveyors work
within planning and land registration laws, regulations, guidelines and
codes. Engineering surveyors are aware of engineering design standards.
Mining surveyors are bound by regulations that are principally safety–
related. Hydrographic surveyors understand that their work will be
scrutinized by a higher authority and relied on by many. The spatial
scientist rarely does work without being in the shadow of some external
authority. These shadows can be legal, financial, political, technical or
ethical. Some are implied in other parts of this work
In contrast to the work of the various surveying branches mentioned here,
a GIS developer, remote sensing scientist or cartographer does not require
license or accreditation to operate.
Remote Sensing specialists working on a statewide, baseline vegetation
mapping project operate in the shadow of current ‘technical best practice’
in preprocessing, analysis and accuracy assessment. There are no statutes or
guidelines or requirements to lodge this information in connection with land
title. (This may change in future when biota rights become more well defined
and concern for the environment escalates. )
It is not difficult to imagine a time when the work of spatial scientists
other than surveyors will be more regulated, more subject to external
constraint. The practitioner would be wise to remain aware of the
ever-present external constraint of ‘reasonable standards of practice’.
7.4 Assess and Share The Risks
There is always risk of failing to meet technical or time requirements;
of finding unknown circumstances in a greenfield site; of atmospheric or
physical conditions frustrating the mission. There may be a risk of not
being able to find all the underground services. Access to the site may not
be granted, or the planning authority may refuse the application.
If the risks are identified at the start there will be less likelihood of
dissatisfaction or dispute when the possible becomes reality. There are
times in professional life when “I told you so” has to be said, preferably
not in those words.
7.5 Define The Critical Terms
This principle might otherwise be called “agree on a common technical
language”. While others of the contextual fundaments apply equally well to
many other disciplines and industries, this one is nearer to being exclusive
to the spatial sciences.
There is a word in our lexicon that is particularly problematical -
“accuracy”. By itself it has little other meaning than ‘nearness to the
truth’. It has no specific meaning in error discourse. Yet it has been and
still is used to define the spatial quality of our work. It might variously
be interpreted as Standard Error or RMS, or as ‘the error unlikely to be
exceeded’, or ‘tolerance’. A factor of three separates the extremes. Finding
and adopting common definitions of error which have less chance of ending in
client dissatisfaction have been discussed (Jonas and Byrne 2003).
Until industry expressions of error are standardised, and even well
after, this principle remains one to be kept in mind always.
7.6 Test Processes Against Project Scope
Having defined the objectives, the scope and the processes to achieve
them; and having shared the excitement of being awarded the contract; the
work starts. On projects that last over long periods it is not unusual for
objective and scope to be reconsidered and adjusted. If the spatial
professional does not consider the chosen processes against the new scope or
timeline, there is a possibility of not delivering to specification, on time
or to budget. The effects of incremental scope change must be considered and
compensated. This principle might be re-named “Beware of Scope Creep”.
7.7 Attribute Contributions By Others
Easily overlooked and likely to become more common as data sets are more
available and accessible, it is important to attribute the authorship or
provenance of all data used. This is not only demonstrates good manners and
respect for others, it may avoid embarrassment, or even claims for damages,
should data from other sources be found deficient.
8. PRESENTING AND EXTENDING THE WORK
The first public presentation of ‘The ABC of x,y,z’ (Byrne and Kelly
2005) generated an encouraging level of enthusiasm among younger
professionals. (The emergence of ‘Young Spatial Professionals’ as an
energetic and influential part of the surveying and spatial sciences
community in Australia is a noteworthy story of its own). Consequently,
workshops and presentations were undertaken in four Australian states in the
following year.
The first lesson came from the young professionals: make a ‘pocket
edition’. Almost immediately one page versions of the work were made. One
compiled in question form is appended here.
As presentations and workshops developed, lessons were learned:
- An effective way of presentation is to adopt a Socratic approach in
which it is expected that all the wisdom will be found within the group,
not the presenter. Depending on the level of experience and maturity of
the group, ‘elders’ may be invited to contribute.
- This approach requires the leader to be an enquirer.. Each point of
discussion may be commenced with a question such as “what does this mean
to you?” This allows the Principles as proposed here to become agenda
items.
- The physical environment for these discussions is important. Small
rooms with chairs in an arc or circle, with no tables, have proved to be
effective. An auditorium, designed to focus attention on the presenter
alone, is not suitable, even counter-productive.
- In the majority of sessions held so far, participants have shown an
interest in focusing mainly on the behavioural principles – ethics. This
has been accommodated by getting the group to consider and resolve
ethical dilemmas and using their considerations to evolve a dilemma
resolving process.
- Not all participants can be expected to be comfortable with a
non-instructive environment. Some have expressed a preference for a mix
of tutorial and dialogue. This is a reminder of the challenge for the
presenter: to be not authoritative while controlling the process, to be
aware of the vulnerability of each participant, to acknowledge the value
of the mishap or mistake, to share stories without imposing his or her
values.
- In recognition of the likelihood of each participant gaining
different benefits from the exercise, and the value of each better
understanding the other, participants have completed short journals
before leaving. The recorded points and observations made have been
assembled and circulated, without disclosure of origin, by the
presenter.
From this last point, the value of the work has been confirmed. One of
the most common comments has been in relation to every professional,
regardless of occupation or station, having a client and the occasional
difficulty of identification of the client. For many the Contextual
Principles have been identified as being particularly useful. Younger
participants have remarked on their better understanding of the complexity
of the demands of professional life. Others have found stimulation in coming
to terms with the abstract nature of Principles, particularly those of
ethics. The authors have been encouraged to hear that versions of the
‘pocket edition’ have appeared on office walls; and that dilemma-resolving
processes developed in the workshops have been used in real-life
circumstances.
The most memorable line of feedback came in the words: “ ‘the ABC of
x,y,z’ will add to my confidence in standing up to my boss”.
9. REFLECTION
The principles as have emerged through this work are not clear laws or
rules which any person involved in the spatial sciences can be expected to
follow. Simple in their framing and written in the abstract, Principles
depend on expert knowledge and experience in their application. In other
words, the principles lead us to the domain of the professional. They
separate the professional from the ‘average’ practitioner or the layperson.
Being constructed in abstract terms, Principles defy codification. They
can have many meanings. The question: “how can Principles be passed from the
experienced to the less experienced?” was asked earlier. And having being
compiled by just two authors (with the help of their reviewers), the
Principles proposed here are not authoritative, yet have not been challenged
so far.
Recent experiences of discussing Principles in a collegiate or ‘workshop’
environment lead us to think that the Principles can be nurtured and carried
on by the asking of the simple question of each of the participants: “what
does this principle mean to you?” Answers may be initially based in the
abstract but will shift to experience – stories which illustrate meaning.
The many shared answers allow the sharing of wisdom, embedding Principles in
the consciousness of the group members.
“The Ten Canoes” (de Heer 2006), a remarkable film of myth, metaphor and
cautionary tale, set in Arnhem Land in Australia’s far north, provides a
useful analogy. Firstly, the story is not short. Learning occurs during the
story as well as its conclusion. Secondly, the sharing of a story raises a
wide number of related issues and achieves a range of outcomes depending on
the life experiences of the listener. For some, the story refreshes the
listeners’ lessons of the past; for others, the story provides new insight
into aspects of life not fully considered.
Sharing the 21 Principles in the way described here is about as close to
the campfire conversation that we can expect to get in the 21st Century. In
light of our experiences, it would be appropriate to rename ‘Principles’ as
‘Questions’ as questions invariably lead from the abstract to the tangible
by way of stories.
Story-telling, the most ancient form of communicating and development of
understanding has its place in modern professional development.
REFERENCES
Byrne, P and Kelly, G. 2005. The ABC of x,y,z – Principle-Based
Success for the Geospatial Professional.
Proceedings of Spatial Sciences Conference, 2005, Melbourne, Australia,
September 2005.
Byrne, P and Kelly, G. 2005. The ABC of x,y,z: Principle-Based Success.
Pocket (Don’t Leave Home Without It) Edition. Unpublished
Byrne, P. 1998. New Technologies, Ageless Principles. Proceedings of
the 39th Australian Surveyors Congress, Launceston, Australia, Nov 8-13.
Cowan, James .1997. A Mapmaker’s Dream. p7, 111. Vintage ISBN 0 09
183499 6
de Heer, Rolf. 2006. Ten Canoes. A film by Vertigo productions.
Adelaide, Australia
Federation Internationale des Geometres (FIG) .2004. FIG Definitions of
the Functions of a Surveyor.
http://www.fig.net/general/definition.htm
Fisher, P.F. and Lindenberg, R. 1989. On Distinction Among Cartography,
Remote Sensing and GIS. Photogrammetric Engineering and Remote Sensing,
55 (10) :1431 – 1434.
Jones, D. and Byrne, P. 2003. Airborne Laser Scanning – Beyond Its
Formative Years. Proceedings, Spatial Sciences Conference, Australia,
2003.
Kelly, G., Fitzpatrick, B., Phinn, S. and Hill, G. 1991. What Do the
Processing of Satellite Imagery and Cartography Have in Common?
Cartography, Volume 20 (1) June, Australia.
Spatial Sciences Institute (SSI) Australia .2003. Code of Ethics.
http://www.spatialsciences.org.au/join/
The Society of Cartographers. 2002. Cartographic Principles – an Ongoing
Discussion, United Kingdom.(CARTO-SoC, a listserv. Accessed February
2005)
http://www.shef.ac.uk/uni/projects/sc/cartosoc/2002/Mar/msg00059.html
BIOGRAPHICAL NOTES
Peter Byrne commenced surveying in 1960 and stood down from his
position of Managing Director of AAM Surveys Pty limited, an Australian
surveying and mapping company, in 2001. He represented his profession as
President of the Institution of Surveyors Australia and Vice President of
the Federation Internationale des Geometres (FIG). While maintaining his
interest and involvement in the spatial sciences, he practices as an
arbitrator, mediator and conciliator.
Gail Kelly is the Business Development Manager of AAMHatch Pty
Limited, a Director of the Australian Spatial Information Business
Association (ASIBA) and Patron of the Australian Spatial Sciences
Institute’s Young Spatial Professionals (YSPs). She has worked in all
industry sectors (academia, government and the private sector) and as such
has a broad view of the spatial information industry.
CONTACTS
Mr Peter Byrne
Byrne Consult
PO Box 145
Maylands,
Western Australia 6931
AUSTRALIA
Tel. + 61 9 92714560
Email
[email protected]
Ms Gail Kelly
AAMHatch Pty Limited
16 Julia Street
Fortitude Valley
Queensland 4006
AUSTRALIA
Tel. + 61 7 36203111
Email [email protected]
Website www.aamhatch.com.au